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INTRODUCTION

This document describes a generic POCC architecture based upon current POCC
software practice, and several refinements to the architecture based upon object-oriented
design principles and expected developments in teleoperations. The current-technology
generic architecture is an abstraction based upon close analysis of the ERBS, COBE, and
GRO POCCs. A series of three refinements is presented: these may be viewed as an
approach to a phased transition to the recommended architecture. The third refinement
constitutes the recommended architecture, which, together with associated rationales, will
form the basis of the rapid synthesis environment to be developed in the remainder of this
task.

The document is organized into two parts. The first part describes the current
generic architecture using several graphical as well as tabular representations or
"views." The second part presents an analysis of the generic architecture in terms of
object-oriented principles. On the basis of this discussion, refinements to the generic
architecture are presented, again using a combination of graphical and tabular
representations.



CURRENT GENERIC ARCHITECTURE

This part of the document describes a generic POCC architecture based upon
current software practice and control center operations. The architecture is essentially an
abstraction of the ERBS, COBE, and GRO POCCs, based upon their common elements
and features. In a few cases, a feature of one of these POCCs was selected as generic
even though not shared by the other two POCCs. Such decisions were based upon
extended discussion of POCC requirements and software design principles. Mappings of
the generic architecture back to the three POCCs have been documented, so that it is
clear what changes to the generic architecture would be required to develop an ERBS,
COBE, or GRO. However, this material has not been included in this document because
we understand our task as pointing to future systems rather than the past.

The current generic architecture is described using several representations or
"views." The first view is a configuration table, which lists the subsystems of the POCC
Applications Processor, and describes the placement of specific functions that could be
placed elsewhere. Placement decisions that reflect current practice and that differ from
the recommended generic architecture are indicated in boldface type.

The second view is a levelled set of entity-relationship (E-R) diagrams. The
levelling reflects the fact that we have grouped together certain top-level subsystems
found in ERBS, COBE, and/or GRO to form higher-level subsystems. The rationales for
such grouping were 1) simplicity, and 2) common underlying data abstractions.

Following the E-R representation is a list of functions performed by each
subsystem. The E-R view, together with this list, provides a convenient baseline for
discussing alternative groupings and the functional adequacy of the POCC architecture.

The next set of diagrams presents a data flow view. Entities in this view
correspond exactly to those in the E-R model, but instead of general relationships
between entities, this view presents specific data flows. The data flow view is levelled in
the same manner as the E-R view.

Finally, we present a dynamic view of the POCC architecture. A set of
composition graphs describes the processing of the principal events that can arrive at, or
occur within, the generic POCC. Processing of events may travel through several
subsystems. Each processing box in the composition graphs is annotated with a
subsystem descriptor. The descriptor identifies the subsystem that performs that
processing step. Following the composition graphs, there is a textual description of the
processing of each event. This text amplifies and explains the information that is
represented concisely in the composition graphs.



POCCAP--GENERICARCHITECTURECONFIGURATION

Subsystems

Offline
OperatorInputandDisplay
History
ExternalSimulator
CMSInterface

Separate
Separate
Separate
Yes
Separate

Functions

Initialization

Database Access

Database Files

Internal Simulation

External Simulator Control

Directive Processing

Customer Directive Input

Single Interface for Operator

I/O Devices

Device Control

Knowledge Based UIF

Load/Image Verification

Telemetry Replay

Non-Network Interface

Network Interface

Distributed

Distributed

Centralized

Part of Telemetry

Local and Remote (AP) Operator

Distributed

No

No

Distributed

No

In Command

In History

Distributed

Centralized



CURRENT GENERIC ARCHITECTURE

ENTITY-RELATIONSHIP DIAGRAMS_
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March 29, 1989

GENERIC ARCHITECTURE 1--SUBSYSTEM FUNCTIONS

TELEMETRY

.

2.

3.

,

5.

6.

7.

8.

9.

10.

Interpret Operator Directives

Initialize Subsystem

Process telemetry blocks and route telemetry information to appropriate

subsystems

Collect Interval Data

Provide Quick Look Experiments Analysis

Provide Special Algorithms (Equation Processors)

Check Analog Limits

Monitor Spacecraft Configuration

Provide Simulation

Copy Telemetry Blocks and Interval Data to History

DATA BASE

1. Initialize Subsystem

2. Create ODB from raw input

3. Update the ODB via Operator Input

4. Print out ODB

COMMAND.REAL-TIME COMMAND

.

2.

3.

4.

5.

6.

7.

8.

9.

Initialize Subsystem

Interpret Operator Directives

Receive Command Groups and OBC Loads from CMS Interface

Receive Images and Verification Data from Telemetry

Generate OBC Loads and Commands

Verify OBC Loads and Commands

Transmit OBC Loads and Commands to S/C via Network Interface

Send OBC Images to CMS Interface

Copy Commands to History

OPERATOR.NCC PROCESSING

.

2.

3.

4.

5.

Initialize Subsystem

Interpret Operator Directives

Parse Incoming NCC Blocks

Acknowledge NCC Block receipt

Generate NCC status requests/responses



,

7.

Monitor NCC responses to status requests

Copy NCC Messages to History

OPERATOR.DISPLAY

°

2.

3.

4.

5.

6.

Initialize Subsystem

Interpret and Process Operator Directives

Format Display Pages (Telemetry, SNAP, Special, etc.)

Drive External Devices

Manage Event Messages

Copy Event Messages to History

HISTORY MANAGER.HISTORY

°

2.

3.

4.

.

6.

Initialize Subsystem

Interpret Operator Directives

Record History Data from all subsystems

Generate Printer Listings for Event Messages, Commands, NASCOM Blocks,

Tape Directory

Provide Telemetry and Interval Data for Offline Processing

Replay NASCOM Blocks to Telemetry via Network Interface

OPERATOR.OPERATOR INPUT

.

2.

• 3.

4.

5.

Parse and edit operator input (except DATABASE subsystem)

Verify User Access

Route directives to other subsystems

Process directives

Copy Operator Input to History

HISTORY.MANAGER.OFFLINE

o

2.

3.

4.

5.

6.

7.

Initialize Subsystem

Interpret Operator Directives

Perform S/C clock error calculation

Perform Long-term Trend Analysis

Summarize Out of Limit Data

Convert IPD History Tape to POCC AP Format

Download Interval Archival Data to Display (IDT)

NETWORK

1. Initialize Subsystem

2
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3.

4.

5.

6.

7.

Interpret and Process (Network configuration) Operator Directives

Format outgoing blocks

Route outgoing blocks to external entities

Strip incoming block headers

Route incoming blocks to appropriate subsystems

Copy NASCOM Blocks to History

COMMAND.CMS INTERFACE

1. Receive OBC Loads and Commands from CMS

2. Send OBC Loads and Commands to Command

3. Receive OBC image data from Command

4. Send OBC image data to CMS

EXTERNALSIMULATOR

°

2.

3.

4.

5.

6.

7.

Initialize Subsystem

Interpret NASCOM Blocks

Interpret Directives

Execute S/C Commands

Generate Telemetry

Generate NCC Messages and Acknowledgements

Send Telemetry and NCC Messages/Acknowledegments to Network Interface
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CURRENT GENERIC ARCHITECTURE

DATA FLOW DIAGRAMS
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CURRENT GENERIC ARCHITECTURE

COMPOSITION GRAPHS



Legend for Composition Graphs

ES = External Simulator

DI = Operator. Display

HI = History Manager. History

OI = Operator.Operator Input
NI = Network

NP = Operator.NCC Processing

TE = Telemetry
CO = Command. Real-Time Command

CI =Command. CMS Interface



External Simula_ Driven by NASCOM Blocks
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External Simulator Driven by Local Operator Directives
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Process Data to be Sent to External Systems via NASCOM
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Process Operator Directive for $/C Command
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Process OBC Loads (Command Sequenc,es)
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External Simulator

External Simulator Driven by NASCOM Blocks

The POCC AP communicates with the External Simulator through the POCC AP
Network Interface Subsystem. Data axe exchanged as NASCOM Blocks in both
directions. These blocks may contain a directive originating from a remote operator, an
NCC message response from the NCC Processing subsystem, or a S/C command from
the Command subsystem. The External Simulator processes the directives and uses the
NCC responses and Commands as input to the simulation. It generates simulated
acknowledgements to NCC responses and simulates execution of S/C Commands.
Simulation results are then formatted into NASCOM Blocks and sent via NASCOM to

the NCC Processing or Telemetry subsystems of the POCC AP through its Network
Interface subsystem.

Process Command Block

The External Simulator fast examines command blocks to determine their content. SIM

directives are used to drive the simulation, and Command data is used for simulating
command execution.

External Simulator Driven by Local Operator Directives

The External Simulator may be controlled by directives from a local operator. These
directives are processed in the same manner as those received as NASCOM Blocks from
the POCC AP. Simulation results are formatted into NASCOM Blocks and routed

through the POCC AP Network Interface subsystem to the NCC Processing or Telemetry
subsystems.

Process Directive

Directives may come from a local operator or from a remote operator. If the directive
was sent by a remote operator, it was sent through the POCC AP Network Interface
subsystem which formatted the directive as a NASCOM block and sent it to the External
Simulator via NASCOM. The External Simulator first interpretted this NASCOM block
and then transferred it to this part of the system (see composition graph labeled "External
Simulator Driven by NASCOM Blocks"). Directives are translated and categorized as
either NCC directives, or SIM directives. SIM directives are used in generating
simulated Telemetry Frames. NCC directives result in the generation of simulated NCC
messages.

POCC AP

Process Event Message

All POCC AP subsystems create event messages and forward them to the Display
subsystem for operator display. The Display subsystem determines whether the event
messages may need to be prefixed (GMT) and/or have color characteristics added before
they are displayed. The Display subsystem then copies the event message to the History
subsystem which writes the event message to the appropriate history tape. The Display



subsystem also writes the event message to the event deque. The event message may
then be output to the specific event printer and/or to the specific event region/STOL
region on the operator's CRT.

Process POCC AP Operator Directive

Operator directives are input to the POCC AP Operator Input subsystem. The Operator
Input subsystem parses the user input and then verifies the user access. The directive is
then sent to the History subsystem which maintains a record of operator directives.
Based on the type of directive, the Operator Input subsystem then sends the directive to
the appropriate POCC AP subsystem if it is an internal directive; if the directive is
targeted to a system that is external to the POCC AP, it is sent to the Network Interface.
The Network Interface then formats the directive according to the appropriate protocol
and routes it to the specified system.

Process Data to be Sent to External Systems via NASCOM

All communications to systems external to the POCC AP are sent through the POCC AP
Network Interface subsystem. The Network Interface subsystem formats the data into
blocks using the appropriate protocol. Data which is to be output to external systems
accessable via NASCOM are formatted into NASCOM blocks. The Network Interface

then routes these NASCOM blocks to the appropriate external system based on the type
of data and the selected subsystem. S/C Blocks contain S/C commands and OBC loads
from the Command subsystem to be used by the spacecraft or for simulation. NCC
Blocks originate from the NCC Processing subsystem. They may contain
acknowledgements and responses to messages received from the NCC via NASCOM
through the Network Interface subsystem, or, as a result of operator directives, they may
contain requests to the NCC for information.

Process NCC Block

The NCC sends information via NASCOM to the POCC AP. This information first

arrives at the POCC AP Network Interface subsystem formatted as a NASCOM Block.
The Network Interface subsystem strips the NASCOM header information and routes the
block to the NCC Processing subsystem. NCC Processing then generates an
acknowledgement that it has received the NCC Block which is then forwarded to the

Network Interfac_ subsystem for transmitting to the NCC via NASCOM. NCC
Processing also copies the NCC block to the History subsystem for later replay, and
responds to the NCC Block based on its contents.

Process Telemetry Block

The POCC AP Network Interface subsystem receives telemetry formatted as a NASCOM
Block from the TAC via NASCOM. The Network Interface subsystem strips the
NASCOM header information and routes the block to the POCC AP Telemetry

subsystem for processing. The Telemetry subsystem copies the block to the History
subsystem for later replay, and processes the block based on its contents. The telemetry
block may contain non-telemetry command echo blocks and/or OBC images which the
Telemetry subsystem routes to the Command subsystem for further processing.



Scientificandengineeringtelemetry data are analyzed, and result reports are generated.
These reports are sent to the Display subsystem for operator display.

Process Command Echo Block

Command responses and OBC Image Data are generated by the spacecraft and
transmitted to the TAC in addition to the scientific and engineering telemetry. The TAC
transmits the command responses and OBC Image Data together with the telemetry to the
POCC AP via NASCOM. This information first arrives at the POCC AP Network

Interface subsystem formatted as a NASCOM Block. The Network Interface subsystem
strips the header information and routes the Telemetry block to the Telemetry subsystem.
The Telemetry subsystem separates the non-telemetry data (command responses and

OBC Image Data) and sends this to the History subsystem for storage as a non-telemetry
echo block. The Telemetry subsystem also routes this non-telemetry (command) echo
block to the Command subsystem for further processing. The Command subsystem uses
the command echo block to verify that the OBC loads and commands were transmitted

correctly. If any errors in transmission are detected, the Command subsystem forwards
the original OBC load and command to the Network Interface for retransmission. The
Command subsystem then summarizes the results of the command verification and sends
a report to the Display subsystem for operator display. In addition, the Command
subsystem forwards the OBC Image Data to the POCC AP CMS Interface subsystem.
The CMS Interface subsystem then forwards the OBC Image data to the Network
Interface for communication to the CMS.

Process Scientific and Engineering Telemetry Data

Scientific and Engineering Telemetry Data is processed and analyzed by the POCC AP
Telemetry subsystem. This information may include interval data, data for quick look
analyses, analog limits, and S/C configuration data. Interval data is collected and
forwarded to the History subsystem for later replay. The Telemetry subsystem also
performs several functions using the telemetry data as input. It does a quick look
analysis as well as performing other special purpose algorithms, checks analog limits,
monitors the SIC configuration, and generates parameters for the attitude data which is
sent to the FDF via the Network Interface. The Telemetry subsystem will then use the

results of its analyses and calculations to generate telemetry data summary reports which
are forwarded to the Display subsystem for operator display.

Process Incoming NASCOM Block

All network communications from systems external to the POCC AP are fast received by
the Network Interface subsystem. Many of these communications are via NASCOM and
arrive at the POCC AP Network Interface subsystem formatted as NASCOM Blocks.

Upon receipt, the Network Interface first copies the NASCOM Block to the History
subsystem. It then strips the NASCOM header from the block and determines which

POCC AP subsystem the information should be sent to based on the type of block. NCC
Blocks are routed to the NCC Processing subsystem, and Telemetry Blocks are routed to
the Telemetry subsystem.



Process Operator Directives for S/C Command

An operator directive may be targeted for the spacecraft. This type of directive is sent by
the Operator Input subsystem to the Command subsystem. The Command subsystem
parses and edits the directive, and tests it for criticality. The Command subsystem then
uses the directive to prepare the command(s) for the S/C. If the directive is determined to
be critical, its use is first verified with the operator. The prepared S/C command(s) are
then forwarded to the Network Interface subsystem. The Network Interface formats the
S/C command as a NASCOM block and sends it via NASCOM to the TAC. The TAC

would then transmit the command to the spacecraft.

Process OBC Loads (Command Sequences)

OBC loads (command sequences) originate from the CMS. The CMS sends the OBC
loads (command sequences) to the POCC AP via MODLAN. The CMS Block arrives at
the POCC AP Network Interface subsystem. The Network Interface subsystem first
strips the MODLAN header from the CMS Block. It then routes the OBC loads
(command sequences) to the POCC AP CMS Interface subsystem. The CMS Interface
sends this information to the Command subsystem. The Command subsystem then
processes the OBC loads for transmission to the spacecraft. The prepared OBC loads
(command sequences) are then forwarded to the Network Interface. The Network
Interface formats the OBC loads (command sequences) into a NASCOM block and sends
it via NASCOM to the TAC. The TAC would then transmit the OBC loads (command
sequences) to the spacecraft.



GENERIC POCCARCHITECTURE - RECOMMENDED REFINEMENTS

This part of the document describes a series of three refinements to the current
generic architecture. The third refinement results in the recommended genetic
architecture. The recommended architecture, together with associated rationales, will
form the basis of the rapid synthesis environment to be developed in the remainder of this
task.

The refmernentsand rationalesarepresentedin5 subsections.The firstsection"

raisesde.sign,issuesconcerningthecurrentgenericarchitecture.The secondsection
apliesprmclples ofobject-orienteddevelopmenttoidentifysolutionstotheissuesraised.
The third section summarizes the recommendations in the form of focused entity-
relationship diagrams. Each of these diagrams focuses on a particular issue, and presents
theemxent approach alongside therecommended approach.-._:.:._._:._

The founhiectioa sunenaW_s thealternativesin i_a_em

being, them tablu_te our database of architectural
provide a comise _m in which to view the current architece_
refinements, and various intermediate options. , _"_-,

The finals_,'tionisa seriesof three configuration
which iueedead tl cm'rent generic architecture. The
reeemme__ ____ As in the case of the



ISSUES IN DEVELOPING POCC ARCHITECTURES

The followingisa discussionof some of the issuesinvolved in specifyinga
POCC-AP architecture.The listof issueswas developed during our comparison of

existing AP architectures and during our generation of a generic AP architecture. The
issues are classified according to the major functional areas addressed. Typically, a
designer's decisions concerning one of these issues will impact several of the subsystems
that appear in an AP architecture. This impact can range from eliminating a subsystem
from the architecture to modifying the functionality associated with a subsystem or
modifying the internal structure of a subsystem. Our discussion of each issue presents
the effects that alternative resolutions of the issue may have on the AP architecture.

Within some of theissuedescriptionswe make recommendations on which

alternativeshouldbe pursued. Most of our recommendations are based on the following

fivedesignprinciples.These principlesarecommon inmodern designmethodologies
such as Object-OrientedDevelopment:

o Separate real-rime processes from non-real-time or intermittent processes.

o Isolate related activities in a single subsystem.

o Separate dissimilar or unrelated functions.

o Remove knowledge of a system's internals from the systems using that system.

o Isolate interfaces between the system and external entities.

3.1 AP Control

The issues associated with this functional area address how control flows through
the AP to make the subsystems work in unison.

Distribun'ng initiafization to all subsystems. In some of the APs we looked at
system initialization is performed in a single subsystem. For instance, in GRO
initialization is performed in the Offline.,/History/ODB subsystem. It is our belief,
however, that some initialization is being done by each of the subsystems, even though it
is not shown in the SRS. The Display subsystem may initialize its data queues.
Telemetry may initialize some of the TUT fields, and so on. We believe that it would be
better to make this initialization process explicit in future APs. Each subsystem should
have an internal initialization process that determines how the subsystem repsonds to the
initialization directive, and the initialization directive should be broadcast to all
subsystems. This design adheres more closely to the principles of object-oriented design,
and it will allow new subprocesses to be added to a subsystem and initialized without
having to change a centralized initialization process in some other subsystem.

Making all subsystems responsible for responding to their own directives. The
actual control of the AP is not well-defined in the AP SRSs we reviewed. There appear

to be two different ways for directives to be processed. Which path is taken is dependent
upon the directive type: command or non-command. Command directives translate into
spacecraft commands. They go directly to the Command subsystem where they are
converted into spacecraft commands. The non-command directives are used to control



the internalprocessingof theAP. How this is done can vary between systems. In GRO,
the system appears to be controlled through the STOL subsystem. STOL resolves each
non-command directive into the appropriate procedure call(s) in the AP subsystems. An
alternative way to process non-command directives is to allow each subsystem to respond
to its own directives (i.e., there is no single subsystem that interprets these directives into
procedure calls). We would still need a subsystem to verify the existence of an issued
directive, verify an issuers rights, and route the directive to the appropriate subsystem.
This implementation has the nice property that it decouples the input of directives from
their actual processing.

3.2 Operations Database

The issues associated with this functional area address how the items in the

Operations Database are created, accessed and manipulated.

Centralizing access to the ODB. In the systems we looked at, the ODB is created
by converting some raw specification of the ODB into a set of operating system files.
These files are then accessed direcdy by the other subsystems. This means that the AP
subsystems must incorporate an intimate understanding of the ODB's internal structure
into their logic. Although this does make the system faster, it can make maintenance
difficult. Any changes to the ODB will probably require detailed changes to one or more
subsystems. We feel that this distributed access should be replaced by some form of
centralized access that removes knowledge of the ODB's lowest level structures from the
subsystems. Given today's high-speed processors and storage devices, it seems unlikely
that these changes would seriously degrade the system's performance.

Supporting interactive maintenance of the ODB. In the COBE system, editingof
the ODB ismentioned explicitly.This functionalityshould be included in allfutureAPs.

Distributing ODB across subsystems. In Ford's AGS system, the ODB is
partitioned according to the major subsystems in the system. Each subsystem contains
the ODB information it uses in its processing. This approach seems to adhere more to
the principles of object-oriented development than does the single centralized ODB. It
_oes, however, risk degrading the maintainability of the ODB. One possible compromise
would be to maintain a single ODB, but define individual views (i.e., subschema) for

each subsystem. The subs_,stems would then only need to know about the data that
pertains to their functionality. This approach may increase the time required to access
the data. Another approach would be to use a cenu'al database during maintenance, and
generate new subsystem da_bases from the single ODB each time the ODB changes.
This approach may be unacceptable if the subsystems must modify their databases during
their processing.

3.3 Operator Interface

The issues associated with functional area address how the operator and AP
interact.

Combining the Operator Interface functions into a single subsystem. Currently,

the control of the operator interface device(s) is spread across several subsystems. In
GRO for example, the keyboard input is handled by the External Interface subsystem, but
the screen output to the operator is handled by the Display subsystem. All control of the
operator input and output devices should be combined into a single subsystem. This will



isolate knowledge of the devices in a single subsystem, and it will support changes to the
interface. This is particularly important given the likelihood that these devices will be
the same (or at least overlap) in the future.

The actual processing of the operator input and the handling of AP output to the
operator should also be combined into the same subsystem. This recommendation
reflects the likelihood that both of these interfaces will be highly interdependent in the
future. Previous operator input will determine how AP output should be displayed, and
previous AP output will determine the options available to the operator.

Combining control of External Simulator and AP into a single Operator
Interface. One trend that has been common in the Control Center arena has been to try to
reduce the number of controllers required for each mission. One possibilty would be to
combine the roles of AP operator and External Simulator operator. This seems to be
consistent with the plan to move some control functions to the customer sites. The AP
(and AP controller) would then be responsible for checking comparability between the
customers' S/C commands. An advanced simulator would be an excellent way of doing
this. Adding these responsibilties to the AP would dictate extensions the operator's AP
control interfaces.

Knowledge-based Operator interface. As satellites and their payloads become
increasing complex, the number of monitoring and control functions may become too
large to be understood by a single individual. One way to to remove some of this load
from the operator would be to incoporate some form of expert system into the AP. The
expert system could perform many of the standard monitoring and control functions. The
human operator would handle the less frequent but more challenging control tasks.

3.4 External Interfaces

The issues associated with this functional area address how the AP interacts with

systems external to itself. These systems may include: TAC, DOCS, RUPS, TDRSS,
STDN, GMT sources, CMS, FDF, the NCC, and/or the External Simulator. This section
does not address how any of these systems might be controlled by or control the AP.
These issues ate discussed in other sections. Instead, this section discusses the actual
linkage between these systems and the AP.

Centralizing network interface/unctions. In COBE and ERBS, Telemetry
handles the muting of NASCOM blocks, and each subsystem interacts directly with the
appropriate networks. Furthenmyre, the initial processing of NASCOM blocks is done in
Telemetry. In GRO, there is an Externed Interface system, but its functions are limited to
routing information between externals and subsystems. It does not perform any
formatting, deformatting or processing functions. We believe that the reuse potential of
the AP could be raised significantly by placing all knowledge of the networks in a single
subsystem. This subsystem would then be responsible for deformatting incoming blocks
and muting them to the appropriate subsystem, and formatting outgoing blocks and
routing them to the appropriate external system. The subsystem might also have to
translate AP internal block formats into external formats and vice versa. By doing this,
the AP would easily support the replacement of networks and the addition of new
networks.

Centralizing non-network interfaces to external systems. In addition to

centralizingallnetwork interfaces in a single subsystem, it would also help to centralize
the interaction between the AP and other external systems in a single subsystem.



Currently,manyof theseexternalinterfaces take place via tape transfers. In the future,
these transfers will probably be via a network. By encapsulating these interfaces into a
common subsystem, the AP will be able to support the sharing of these devices (e.g.,
networks and tape drives). However, this may require the interface subsystem to be
configurable (i.e., it may be necessary to support switching of links between the AP and
the external systems).

3.5 Device Control

The issues associated with this functional area address how the AP interacts with
the peripherals it is connected to. These devices include: printers, storage devices, and

special purpose devices (e.g., strip chart recorders). The control of devices associated
with operator-AP interaction were discussed in Section 3.

Combining external device drivers (except Operator) into a common subsystem.
In COBE, the event and line printers are controlled by STOL. In the original generic AP,
event and line printers are controlled by Display. In ERBS, all subsystems may interact
with the line printer directly. All of these approaches mean that several subsystems must
have knowledge of how the printers (and other devices) are controlled. A better

approach would be to centralize access to the external AP devices in a single subsystem.
This approach has already been used in GRO's ODN. Centralization will make it easier
to incorporate redundant devices (for failure protection) and to replace obsolete devices.

3.6 Command Processing

The issues associated with this functional area address how S/C commands are

generated by the AP and how the S/C's response to these commands is verified.

Placing both OBC Load and Command verification in a single subsystem. In
COBE, OBC memory comparisons are done in Display. In GRO, memory comparisons
are done in Telemetry, but command verification is done in Command. In ERBS and the
original generic, both types of comparisons are done in Command. The similarity
between the two processes and the similar purposes of the two data types lead us to
believe that this combination would probably reduce the complexity of the system by
reducing the interactions between the subsystems, and would increase the potential for
reuse.

Separan'ng CMS Interface from Command. In the systems we looked at only
GRO separates CMS Inl_face from Command. The rationale appears to be that CMS
Interface handles the intermittent interactions between CMS and the .ALP,whereas

Command handles the real-time generation of commands (both commands and OBC
loads) and the verification of these commands. This separation should lead to increased

performance of the system as a whole.

3.7 History Management

The issues associated with this functional area address how data is collected by

the AP over time and how this data is used by the AP.

Separating Offiine Processing from History. In the systems we looked there
appears to be a common practice of combining History and Offline processing, or of



subsumingoneof thesesystemsin another subsystem. In COBE and GRO, History and
Offline are combined. In ERBS, there is no History subsystem. Instead, history is

created by various subsystems but is processed by Offline. This practice seems to
combine two subsystems with cognitively related goals but with very different processing
requirements. History data is collected constantly throughout the AP's operation,
whereas Offline processing occurs only intermittently. For this reason we advocate

separating the two processes into distinct subsystems.

Telemetry replay controlled through History. How history data is stored and
accessed should be controlled by a single subsystem. This isolates knowledge of the
dam's internal format in a single location. Telemetry data is one form of history data,
and access to it should be controlled by the History subsystem. Therefore, the replay of
telemetry data should be controlled by the History subsystem.

Telemetry replay done via Network Interface. The replay of data is intended to
allow the AP to reenact previous S/C passes. In COBE, replay is initiated in History, but
it is fed into Telemetry. This does not seem to be consistent with the idea of using replay
to simulate a previous pass, since normally data enters the AP through the networks. We
propose sending replay data through the Network Interface instead of through other
subsystems.

3.8 NCC Data

The issues associated with this functional area address how the AP interacts with

the NCC to process NCC requests and status information, and to initiate inquiries
concerning NCC status.

NCC Processing handles all interaction with NCC. Interactions between the AP
and the NCC should be handled by a single subsystem. This interaction should not take
place via other subsystems except where absolutely necessary. In COBE and ERBS,
NCC messages are muted through Telemetry and Command. This appears to be because
these systems handle incoming and outgoing NASCOM data. In our original generic AP,
we have eliminated the rink between NCC Processing, and Command and Telemetry
because we isolated interfaces to the networks in Network Interface.

3.9 Simulation

The issues associated with this functional area address the topic of simulation.
Simulation involves simulating those systems that are external to the AP and that are
critical to assessing the AP's real-time performance. These systems include the
spacecraft and the NCC. Simulation may be done within the AP, by external simulator,
or both.

Providing internal simulation. In most of the systems we looked at there does
appear to be telemetry simulation occuring in the AP. It is usually done as part of the
Telemetry subsystem. This placement seems to be mixing different types of processing
in the same subsystem. An alternative approach would be to make the simulator a
separate subsystem. The Telemetry subsystem would then handle only the processing of
incoming telemetry data, and the Simulator subsystem would perform the simulation.

Provi&'ng ch'rect links between the AP and the External Simulator. In COBE, all
interaction between the AP and the External Simulator is through the TA(_. In ERBS,



communicationwith the external simulator can be configured either way, through TAC
or via a direct link. In our original generic AP, the External Simulator is controlled either
by the Operator (locally or remotely) or through the Command subsystem. Furthermore,
the External Simulator's output enters the AP through the Network Interface directly,
instead of through the TAC. This approach of allowing the AP to interact directly with
the External Simulator for both control and data exchange provides a lot of flexibilty in

controlling the simulator, and its makes the simulator identical to the spacecraft in terms
of data flow.

3.10 Teleoperations

The issues in thissection do not a single functional area. Instead,they represent
changes in how spacecraft commands and data will be handled in the future. These
changes may impact several AP subsystems.

Distribun'ng some command functions to the customers. According to the CI_S
directives, the actual creation of S/C (i.e., payload) commands will be initiated at
customer sites instead of in the AP as they are now. This change will probably increase
the functionality of the AP instead of reducing it. For instance, the AP will have to
assure consistency and handle scheduling of the customer's commands, and it will have
to verify each user's rights to issue received commands.

Distributing payload control and data processing to the customers. In future
space missions there will be multiple payloads on each spacecraft. Customers will be
allowed to issue commands to their payloads and to directly access the data produced by
them. However, all such interactions will involve the use of shared spacecraft resources
(e.g., power, communications devices, etc.). The AP will have to have some control over
these shared resources, particularly in spacecraft emergencies. In order to avoid
damaging the payloads, the AP will need to know how altering the stares of any of these
resources will affect the payloads. The AP may also need to coordinate these changes
with the customers.

3.11 Subsystem Design

The issues included in this section do not address any specific functional area.
They address more general design concerns about what items should be included in a
subsystem and how these items should be organized.

Combining Subsystems. Many of the above suggestions have implications
concerning what the subsystems of an AP should be. Some, such as the basic principles
listed in the introduction, only make general suggestions about when to group and when
not to group functions into a subsystem. We mention this issue here because the way in
which a system is partitioned can have a dramatic effect on its maintainability.

Encapsulan'ng Data. One of the best ways to increase the maintainability of a
system is to make atl interfaces within the system explicit. One of the best ways to make
interfaces obscure is through data access. In many systems developed in the past, a lot of
data has been made global within the system, and has been modified and read by several
subsystems. This can make it difficult for a maintainance person to understand exactly
what the links between subsystems are and how the links control the processing in the
system. To avoid this problem, we suggest eliminating the use of global data (at least at



the system level). Instead, each data item should placed within the primary system that
modifies or accesses it. We call this process data encapsulation.

Levelling of functionality in subsystems. As APs become more complex, the
number of functions appearing at the top level of a subsystem will increase. This is

likely to make the subsystem less understandable, and therefore less maintainable. Our
suggestion is that when a subsystem has more than seven top-level items, the developer
should introduce a new level of abstraction into the subsystem. This involves grouping
functions that act on the same or similar data into a new component. These new

functional groups then appear at the subsystem level, and the original functions become
sub-functions of them. The trend toward more levels of abstraction to control complexity
can be seen in the GRO SRS.



OBJECT-ORIENTED PRINCIPLES AND AP ARCHITECTURES

In developingourgenericPOCC-AP architectures we used the five basic
principles described in the section on AP architecture issues. These principles give
guidelines as to when functions should be placed in the same subsystem and when they
should not. The results of applying these principles to existing AP architectures are
summarized in our generic architectures. The APs produced are very similar to APs of

the past.

In this section we consider what effect adding the tenets of object-oriented

development to our list of principles would have on AP architectures. We begin with a
discussion of what these tenets are. These tenets are not replacements for our original

principles; they are additions to them.

Developing Good Abstractions

The fundamental principle underlying object-oriented development is that system

components should be grouped according to the natural abstractions they address. In
defining good abstractions it is necessary to consider all of the following issues:

o Application domain entities: At the upper levels of a system architecture all of
the components (e.g, subsystems) should correspond to either real-world
entities in the problem domain or major types of information being
manipulated by the system. An example of the former is the Operator. An
example of the latter is spacecraft commands.

O Completeness of the abstraction: When an abstraction is being defined, it is
important to identify all of the responsibilties of the abstraction, both those
directly stated in the requirements and those implied by the requirements or
previous domain knowledge. The more complete the abstraction, the less
likely it is to need changes in the future.

O Coupling between components: The coupling between components (i.e.,
functions and data) can be a good indication of what items should be grouped
together. In general, items in the same object should be more tightly coupled
to each other than they are to items in other objects.

0 Complexity in the system: The number of top-level items appe .ar.ing in a system
or subsystem should be small (< 9). When this is not the case, _t typically
indicates that some higher level abstraction exists under which some of the
items should be grouped.

O Impact of the future: When considering the above issues, it is frequently
necessary to consider how the system will change in the future. For example,
two items may not currently be tightly coupled, but if it is likely that they will
be in the future, they should be grouped. Planning for the future will make the
system easier to maintain.

Controlling the Coupling Between Subsystems

In general, the coupling between objects should be kept as low as possible. This
increases their potential for reuse. The subobjects (and items) of an object should be



more closely coupled to each other than they are to objects outside the given object. The
interface routines for an object should be coupled only to the data internal to the object;
they should not access data outside the object. They may of course use routines outside
the object.

Data coupling. In object-oriented development, it is considered bad practice to allow a
function in one object to access the data from another object, particularly if this data is
modified. First, it suggests that we do not have weU-defmed abstractions on which to
base the objects. Secondly, it results in an implicit interface between the objects. This
can have negative effects on the maintainability and reusability of the code. The practice
of providing global data regions was common in many system developments of the past.

The bestway tosupport the sharingof data between objectsisto provide call-by-

value accessfunctionsinthe objectcontainingthedata.In short,we should not allow
accessdirectlytothe datafrom outsidetheobject.Ifaccessisnecessary,a copy of the

datashould be made and thensenttothe accessingroutine.

However, sometimes we really do want to share dam between objects. For
instance, when we pass a NASCOM block from one part of a POCC to the other, we
don't want to copy the block and then send it; we want to send the actual block. This can
be done by encapsulating the data within a smaller object and then passing the smaller
objectbetween thelargerobjects.The encapsulateddatamay only be accessed by the

routinesinthe object.In thisway a well-definedcontractisestablishedbetween thetwo
accessingobjects.Both objectsknow exactlywhat arethe limitson the way the

informationmay be changed by the other.

Real-time processing may (in extreme cases) necessitate sharing data between
objects.

Sharing common functions. Unlike sharing data, object-oriented development is not
adverse to the idea of sharing functions. The more a routine can be reused in an
application the better. We do this all the time without even knowing it. For example,
every numeric operation in a program is really a reuse of some compiler supported
routine. Other common candidates for reusable routines include database management
routines, device drivers, and I/O routines. When the developer identifies a set of
commonly used routines he should place them in a service package so they may be
accessed by other parts of the system and so there is only one copy of the item. Care
must be taken, however, when reusing routines that have side effects (i.e., routines that
change the value of a data item or a device external to themselves), and/or are dependent
on the value of a data item external to themselves. When this is the case, it may be
impossible to predict the results of calling the routine from other parts of the system. The
correct way to handle such routines is to encapsulate them along with the data (or
devices) they act upon into a single object which is accessed by other parts of the system.
If the routines are intended to act on different items in different parts of the system, then
it may be desirable to group the routines into a template and instantiate the template for
different parts of the system. In Ada this is done using generics.

Sharing data types. Object-oriented development encourages the sharing of data types
throughout a system. However, it does require the type itself be hidden within an
encapsulation that includes the routines that may operate on instances of the type.
vice packages

Applying OOD to POCC-AP Architectures



Thefollowing is decription of how applying the OOD tenets will effect the
POCC-AP architectures we have developed.

Grouping top-level subsystems. If a developer were to use the initial set of
recommendations from Section $$$, he would generate an AP architecture with more
than fifteen top-level subsystems. Such an architecture is difficult to understand, even
using a simple entity-relationship model. We, therefore, went back to our original
statements of how an AP works and looked for higher-level component abstractions. By
doing this, we were able to lower the number of top-level subsystems from more than
fifteen to seven. We also identified several high-level relationships that we had not
considered before.

Unifying operator functions. All of the functions that help the operator interface to the
AP should grouped into a common subsystem. In our current generics, the two directions
in this interface are handled by different subsystems (Operator Input and Display) with
little interaction between the two. However, as the operator interface becomes more
complex, it will become necessary to employ advanced display management techniques
in order to avoid overwhelming the operator. This will almost certainly involve basing
the presentation of AP output on recent operator input and limiting the availabilty
operator input options based on recent AP output. In short, the handling of operator input
will be tightly coupled with the handling of AP output. Therefore, the Display and
Operator Input subsystems should be combined into a single subsystem.

Moving NCC from Operator to Network. It is possible to view the handling of AP-
NCC interaction as being part of the operator's role or part of the interface between the
AP and the network(s). In our generic architectures it could be placed, therefore, in
either the Operator or Network subsystems. At the present time, there is no strong data
coupling between the routines associated with the AP-NCC interface and either of the

subsystems. Thus it would seem rather arbitrary as to where the routines should go. But
if we look at possible future additions to the AP we can forsee the need for several AP-
network conu'oller interfaces. We would like to place all such interfaces in a common
subsystem due to their very similar goals. Many of these interfaces may require detailed
knowledge of the networks themselves. We therefore advise placing the routines (and
data) associated with the AP-NCC interface in the Network subsystem.

Removing data from ODB. As we pointed out above, objects should not share access to
data. This includes data in a central database. The best way to ensure that this is the case
encapsulate the data items within the subsystems which access them. We, therefore,
advise against using a single central ODB in future APs. Instead, the data items should

encapsulated within the subsystems that access them. If data must be accessed by several
subsystems, it should be encapsulated in a separate object and then accessed through the
object's interface. The developer may still implement each of the data items using
database technologies, but the databases will have to be maintained separately.

Unifying History and Ofmne. Originally we separated the routines managing history
data and for producing reports based on this data into two separate subsystems, namely
History and Offiine. This was done because the processing requirements for each type of
routine are very different. History management is basically a real-time process, whereas
the generation of reports is predominantly non-real-time. We still feel that this
distinction is valid, but we now recognize the both sets of routines will have to have
detailed knowledge of the history dam's structure. Therefore, the History and Offiine
subsystems should be combined into a single subsystem. The associated with history
management and report generation may still be separated within the new subsystem, and
the data that they share may encapsulated in a shared object.
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Database of Reusable POCC Architectures

Configuring a particular POCC architecture requires supplying answers to questions
raised in the preceding discussion. These decision points have been summarized in
the matrix shown in Figure This matrix is machine processable and can be
combined with a dialog-based sp------ecification tool to define a particular architecture.

The "POCC-AP Pieces" matrix shows all of the subsystems and functions that can

assume other that their pre-assigned positions in the Generic POCC-AP architecture

previously defined in Section . Changing any of these items, results in a

changed architecture. The first s-----ectionshows a complete list of the subsystems
of the generic architecture, whether configurable or not. The second section shows

only those functions which are configurable. All other functions are assumed to
reside permanently within their designated subsystems and are therefore not config-

urable, and not included in the matrix.

The columns of the matrix have the following meanings:

- "Combinable with" shows any other subsystem that the current subsystem may be
combined with for a specific architecture. No assumption is made regarding the

name of the surviving subsystem.

- "Movable From, To" indicates the default location of a function and one or more

alternative destinations to which it may be moved.

- "Optional", if selected, means that the indicated subsystem, function or inter-
face may or may not be included. In configuring a specific architecture, this
choice must be made.

- "Distributed/Centralized", if selected, means that a choice must be made

between distribution and centralization of the subsystem or function.
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POCC AP--RECOMMENDED GENERIC ARCHITECTURE CONFIGURATION
(STAGE I)

Subsystems

Offline

Operator Input and Display

History

External Simulator

CMS Interface

Separate

Separate

Separate
Yes

Separate

Functions

Initialization

Database Access

Database Files

Internal Simulation

External Simulator Control

Directive Processing

Customer Directive Input

Single Interface for Operator

I/O Devices

Device Control

Knowledge Based UIF

Load/Image Verification

Telemetry Replay

Non-Network Interface

Network Interface

Distributed

Distributed

Centralized

Separate Subsystem

Local and Remote (AP) Operator

Distributed

No

Yes

Centralized

No

In Command

In History
Centralized

Centralized



POCCAP--RECOMMENDEDGENERICARCHITECTURECONFIGURATION
(STAGE2)

Subsystems

Of f line

Operator Input and Display

History

External Simulator

CMS Interface

Separate

Separate

Separate

Yes

Separate

Functions

Initialization

Database Access

Database Files

Internal Simulation

External Simulator Control

Directive Processing

Customer Directive Input

Single Interface for Operator
I/O Devices

Device Control

Knowledge Based UIF

Load/Image Verification

Telemetry Replay

Non-Network Interface

Network Interface

Distributed

Centralized

Centralized

Separate Subsystem

Remote (AP) Operator only

Distributed

Yes

Yes

Centralized

NO

In Command

In History

Centralized

Centralized



POCCAP--RECOMMENDEDGENERICARCHITECTURECONFIGURATION
(STAGE3)

Subsystems

Offline Separate
OperatorInput andDisplay Separate
History Separate

External Simulator Yes

CMS Interface Separate

Functions

Initialization

Database Access

Database Files

Intemal Simulation

External Simulator Control

Directive Processing

Customer Directive Input

Single Interface for Operator

I/O Devices

Device Control

Knowledge Based UIF

Load/Image Verification

Telemetry Replay

Non-Network Interface

Network Interface

Distributed

Centralized

Centralized

Separate Subsystem

Remote (AP) Operator only

Distributed

Yes

Yes

Centralized

Yes

In Command

In History

Centralized

Centralized


